
Inflow Documentation
Release 0.2.0

Jaap Broekhuizen

Nov 09, 2016

Contents

1 Example 3

2 Installing 5

3 License 7

4 Table of Contents 9
4.1 Writing Measurements . 9
4.2 Sessions . 12
4.3 Querying . 13
4.4 Error Handling . 14

i

ii

Inflow Documentation, Release 0.2.0

A simple InfluxDB Python client library. It is an alternative for the official InfluxDB Python client library.

Inflow officially supports Python 2.7 and up, but the latest Python 3 version is recommended.

InfluxDB is supported from version 1.0 and up.

Documentation is hosted on Read the Docs.

Source code can be found on GitHub.

Warning: This project is still very much in development, stuff might work, or not. API’s might change, or even
be removed. So be careful. This message will be removed once a stable version is released.

Contents 1

https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb-python
https://inflow.readthedocs.io/en/latest
https://github.com/AdvancedClimateSystems/inflow

Inflow Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Example

You can write measurements in a few different ways, but writing a single “temperature” measurement is as simple as:

from inflow import Client
client = Client('http://username:pass@localhost:8086/databasename')
client.write('temperature', value=21.3)

For more examples and docs on how to use the client, go to Writing Measurements and Querying.

3

Inflow Documentation, Release 0.2.0

4 Chapter 1. Example

CHAPTER 2

Installing

$ pip install inflow

5

Inflow Documentation, Release 0.2.0

6 Chapter 2. Installing

CHAPTER 3

License

Inflow is licensed under Mozilla Public License. © 2016 Advanced Climate Systems.

7

https://github.com/AdvancedClimateSystems/inflow/blob/master/LICENSE
http://www.advancedclimate.nl/

Inflow Documentation, Release 0.2.0

8 Chapter 3. License

CHAPTER 4

Table of Contents

4.1 Writing Measurements

4.1.1 Examples

You can write measurements in a few different ways, but writing a single “temperature” measurement is as simple as:

#!/usr/bin/env python

from inflow import Client
client = Client('http://username:pass@localhost:8086/databasename')
client.write('temperature', value=21.3)

No time is specified in the above example, so inflow automatically set’s the measurement’s time to the current time.
Also, no tags are provided to the write method, so no tags are attached to the measurement.

A more complex example of writing a single measurement:

#!/usr/bin/env python

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename')

client.write(
'temperature',
tags={

'location': 'groningen',
'sensor_type': 'ni1000'

},
value=21.3,
timestamp=1475845863

)

Writing multiple measurements is also possible:

#!/usr/bin/env python

from inflow import Client, Measurement

client = Client('http://username:pass@localhost:8086/databasename')

9

Inflow Documentation, Release 0.2.0

client.write([
Measurement(

name='temperature',
tags={

'location': 'groningen',
'sensor_type': 'ni1000'

},
value=21.3,
timestamp=1475845863

),
Measurement(

name='temperature',
tags={

'location': 'groningen',
'sensor_type': 'ni1000'

},
value=20.1,
timestamp=1475848864

)
])

However, this is a bit verbose. That’s why you can also do this:

#!/usr/bin/env python

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename')

temperature = dict(
name='temperature',
tags={

'location': 'groningen',
'sensor_type': 'ni1000'

}
)

client.write(temperature, [
{'value': 21.3, 'timestamp': 1475845863},
{'value': 20.1, 'timestamp': 1475846182}

])

In the above examples, every write call will issue a direct call to the InfluxDB API. You can accumulate measure-
ments and write them all at once using Sessions.

Note: In every example, we use timestamp ints (in seconds) to specify the time for each measurement. You can
also set the timestamp to a datetime. Inflow will automatically convert both to the right precision when writing to
InfluxDB.

Warning: If you supply a Python datetime instance as the timestamp, make sure it is a timezone-aware instance,
in the UTC timezone.

10 Chapter 4. Table of Contents

Inflow Documentation, Release 0.2.0

4.1.2 Multiple Values

In all the examples above, we assume there is only one actual value for the given measurements. However, InfluxDB
supports having an arbitrary amount of values for every measurements. This is also possible in Inflow:

#!/usr/bin/env python

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename')

client.write(
'temperature',
timestamp=1475846182,
lower_sensor=20.9,
upper_sensor=23.2

)

This will create a measurement with the lower_sensor and upper_sensor values. This method also works
when manually writing Measurement instances, and when writing lists of dicts.

4.1.3 Precision

By default, Inflow assumes the timestamps that are written to InfluxDB are in seconds. However, you can specify a
custom precision when creating the client:

#!/usr/bin/env python

from inflow import Client
client = Client('http://username:pass@localhost:8086/databasename',

precision='ms')
client.write('temperature', value=21.3, timestamp=1476191999000)

The precision needs to be one of: h, m, s, ms, u or ns.

4.1.4 Retention Policies

By default, Inflow will write to the database’s default retention policy. However, you can explicitly specify which
retention policy your measurements should be written to:

#!/usr/bin/env python

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename',
retention_policy='rp_four_weeks')

client.write('temperature', value=21.3)

You can also specify the retention policy when calling into write:

#!/usr/bin/env python

from inflow import Client
client = Client('http://username:pass@localhost:8086/databasename')
client.write('temperature', value=21.3, retention_policy='rp_four_weeks')

4.1. Writing Measurements 11

Inflow Documentation, Release 0.2.0

4.2 Sessions

In the examples listed in Writing Measurements, every call to write will issue a direct call to the InfluxDB API.
There might be situations where you’d want to accumulate measurements and write them all at once. That’s what
sessions are for:

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename')
session = client.session()

session.write('temperature', value=23.1, timestamp=1475848864)
session.write('temperature', value=25.0, timestamp=1475849823)

session.commit()

In the above example, a session is created in which we issue our write calls. After doing some write calls, we call
commit on the session. This will issue the write to the InfluxDB API. If commit isn’t called on the sessions, the
data given in the write‘s will be lost.

Note: The session’s write method works exactly the same as that of the normal client.

Warning: Don’t try to call query on a session, as Sessions are only meant to do writes. If you want to do
queries, just use the Client.

4.2.1 As a Context Manager

You can also use the session as a context manager:

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename')

with client.session() as session:
session.write('temperature', value=23.1, timestamp=1475848864)
session.write('temperature', value=25.0, timestamp=1475849823)

When the context manager exits, the session is automatically committed.

4.2.2 Autocommitting

You can also have the session autocommit after a certain amount of write calls, using autocommit_every:

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename')
session = client.session(autocommit_every=5)

12 Chapter 4. Table of Contents

Inflow Documentation, Release 0.2.0

session.write('temperature', value=23.1, timestamp=1475848864)
session.write('temperature', value=25.0, timestamp=1475849823)
session.write('temperature', value=22.9, timestamp=1475849825)
session.write('temperature', value=28.2, timestamp=1475849912)

This next write call will trigger the autocommit.
session.write('temperature', value=25.1, timestamp=1475849999)

4.2.3 Retention Policies

You can also specify the retention policy for the entire session:

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename')

with client.session(retention_policy='rp_four_weeks') as session:
session.write('temperature', value=23.1, timestamp=1475848864)

Note: Unlike the Client.write method, you cannot specify the retention policy on the Session.write. Retention policies
are Session-wide.

4.3 Querying

Inflow contains a minimal abstraction over the /query endpoint of the InfluxDB HTTP API.

Getting a list of measurements is as simple as:

#!/usr/bin/env python

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename')
results = client.query('SELECT * FROM "temperatures"')
Results will contain a list of dicts for each returned measurement.

Say you’ve got a measurement called temperature (just as in the example above), which contains a value field,
a location tag, and contains 2 values. To query that data you would call the query method as described in the
above example, which will return a list with the following structure:

[
{

'name': 'temperature',
'values': [

{
'time': '2016-01-10T00:01:00Z',
'value': 21.0,
'location': 'groningen'

},
{

'time': '2016-01-10T00:02:00Z',
'value': 23.0,

4.3. Querying 13

Inflow Documentation, Release 0.2.0

'location': 'groningen'
}

]
}

]

You can use any query type that InfluxDB allows, and it should work.

4.3.1 Unix Timestamps

By default, InfluxDB will return timestamps in RFC3339 format with nanosecond precision. If you want instead want
unix timestamps (in a specific precision), you can use the epoch kwarg, like this:

#!/usr/bin/env python

from inflow import Client

client = Client('http://username:pass@localhost:8086/databasename')
results = client.query('SELECT * FROM "temperatures"', epoch='s')

In this example, we specify that we want unix timestamps, in seconds. The epoch argument accepts one of h, m, s,
ms, u and ns.

4.4 Error Handling

If you’re doing something that the InfluxDB API deems wrong, it will return an error. These errors can occur when
trying to query or write data. The exceptions described below wrap the errors returned by the InfluxDB API, and you
should probably make sure you handle them in your code.

4.4.1 Exception types

class inflow.InfluxDBException
Generic exception for InfluxDB HTTP error’s, all other exceptions subclass from this one.

The message in this exception (and it’s subclasses) is the raw error message returned by the InfluxDB HTTP
API.

class inflow.QueryFailedException
Thrown when a query is rejected by the API. For example, this happens when you have a syntactically incorrect
query.

class inflow.WriteFailedException
Thrown when a write is rejected by the API.

class inflow.DatabaseNotFoundException
Thrown when trying to write to a non-existing database.

class inflow.UnauthorizedException
Thrown when trying to log in using incorrect credentials.

class inflow.ForbiddenException
Thrown when a user is correctly logged in, but is not allowed to do the query or write action it wants to do.

14 Chapter 4. Table of Contents

Index

D
DatabaseNotFoundException (class in inflow), 14

F
ForbiddenException (class in inflow), 14

I
InfluxDBException (class in inflow), 14

Q
QueryFailedException (class in inflow), 14

U
UnauthorizedException (class in inflow), 14

W
WriteFailedException (class in inflow), 14

15

	Example
	Installing
	License
	Table of Contents
	Writing Measurements
	Sessions
	Querying
	Error Handling

